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We study some aspects of the effect of mass disorder on the spectrum of 
the dynamical matrix of an infinite crystal in the harmonic approximation. 
Under suitable conditions on the masses, it is shown that the spectrum 
contains an absolutely continuous part and a nonempty set of isolated point 
eigenvalues of finite multiplicity whose number is smaller than or equal to 
the number of impurity atoms if the latter is finite. These conditions are 
satisfied only in the limiting case of zero concentration of each species of 
impurity. We draw some conjectures and make remarks on the spectrum 
under less restrictive conditions on the masses and briefly compare them 
with known results for random harmonic systems. 

KEY WORDS : Lattice vibrations ; dynamical matrix ; disordered system ; 
absolutely continuous and pure point spectrum ; localized modes. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

C o n s i d e r  the  f o r m a l  H a m i l t o n  f u n c t i o n  for  la t t ice  v ib ra t i ons  in a h a r m o n i c  

crys ta l  in v d i m e n s i o n s :  

H ,  = ~ v  ~ pn2 ,21 + ".X.-m"m (1) 

where K is some func t ion  2 o f  posi t ive type and f ini te range, the un are 

d i s p l a c e m e n t  var iab les  a b o u t  the  e q u i l i b r i u m  pos i t ions ,  and  the  Pn are  the  
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In general, the displacements Un are vectors and various quantities treated here as 
scalars, such as K, become matrices. Our methods can be trivially modified to handle 
this case, but the notation becomes rather involved. 
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corresponding momenta (we shall leave a precise mathematical formulation 
to Section 2). We assume for simplicity a Bravais lattice (only one atom per 
unit cell). Hamiltonian (1) describes a disordered system with a priori 
arbitrary but fixed masses M.  at sites n. We shall be interested in the case of 
an infinite lattice (which we identified with 7/0 and shall henceforth refer to 
fixed sets of masses { M , } , ~  as "mass configurations." In a more realistic 
system with impurities, the couplings K(n - m) should also be replaced by 
general functions K(n, m). However, "pure  mass disorder," as described by 
(1), already exhibits several features distinguishing ordered from disordered 
systems.(l~,3 Since we are primarily interested in qualitative information about 
the frequency spectrum, we restrict ourselves in this paper to these (simpler) 
systems. 

The lattice-vibrational frequencies o~(q) satisfy in the limit of an infinite 
crystal the eigenvalue equation (1'2> 

o~(q)2~/(q) = [1/(2~) v] ( dq' p(q - q')/~(q')~(q') 
dB (2) 

q ~ B, ~ ~ ~ :-- L2(B, d~q) 

where B = [ - ~ ,  n]~ is the first Brillouin zone in v dimensions, and (formally) 

/~(q) = ~ [exp(iq.n)lK,, q E B (3) 
n~77v 

p(q) -= ~ (1/Mn) exp(iq-n), q ~ B (4) 
n~7]  v 

The ~/ are related to displacement variables u, ~ 12(g v) by Fourier trans- 
formation: 

u. -- [1/(2~-) ~] f dVp [exp(ip.n)] T/(p) (5) 

The operator (formally) defined by the rhs of (2) is called a "dynamical 
matrix." (1,2> In this paper, we study some aspects of its spectrum. 

The study of a number of models (for instance, the model of a single 
impurity at the origin imbedded on an otherwise perfect harmonic crystal (~'2~) 
suggests that for some infinite systems the spectrum of the dynamical matrix 
should consist of the union of an absolutely continuous part (corresponding 
to the perfect crystal) and a number of isolated point eigenvalues, which 
represent localized modes (with lu,[ of rapid decrease in In]). The number 
of  the latter should be smaller or equal to the number of impurity atoms. 
In the case, for instance, of two-component systems consisting of a species of 

a For a large class of harmonic systems, it can be shown that pure "mass disorder" is 
equivalent to pure "coupling disorder" (J. Hammerberg, private communication). The 
results of this paper are therefore applicable to some systems of the latter type. 
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"heavy"  atoms and a species of " l igh t"  atoms, these localized modes may 
be interpreted as normal modes of vibration of groups of " l igh t"  atoms 
surrounded by "heavy"  atoms (chains consisting of a number of " l igh t"  
atoms lying between two "heavy"  atoms in one dimension<l>). 

In Section 2, precise conditions on the mass configurations are given 
under which the above-mentioned features of the spectrum may be proven 
rigorously. We believe that the framework given there is the appropriate one 
for the formulation and proof of various results in the literature (in particular, 
for those connected to Rayleigh's theorems<~>). 

The assumptions in Section 2 hold only in the limiting case of zero 
concentration of each species of impurity atom. In Section 3, we make some 
remarks and conjectures about the spectrum under less restrictive assumptions 
on the masses, and briefly compare them with known results ~3>'4 for the 
random harmonic chain. 

2. M A T H E M A T I C A L  F O R M U L A T I O N  A N D  RESULTS 

To formulate the problem in a mathematically precise manner, we split 
out from p--for the moment still formally--a delta measure, corresponding 
to a perfect crystal where all the atoms have the greatest mass, by writing 

1/Mn = An + 1/M (6) 

where 

0 <  a~< i n f M n  ~< s u p M n =  M <  ~ (7) 
n~Tv xl~7/v 

It follows that An >i 0, gn ~ Z'. On /~ we assume: /~ is bounded and con- 
tinuously differentiable on B and 

Vg ~ 0 almost everywhere on B (8a) 
and 

/~(q) /> 0 Vq ~ B (8b) 
Letting now 

q~(q) = gl/2(q)~7(q) (9) 

we obtain formally from (2) the integral equation for ~ :  

1 1 
~ = M/~(q)q~(q) + ~ f~ dq'/~lJ2(q)pl(q - q,)/~l/~(q,)q~(q,) (10) 

where pl = p - (l /M)& We are therefore led to investigate the spectrum of 
the operator 

H = Ho + V (11) 

See also the review by Lebowitz, and Ref. 15. <4~ 
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where H0 is the bounded symmetric operator defined on all ~ e ~ f  by 

(n0~)(q) = (1/M)-g(q)r 
and V is defined by 

where P is defined by 

where 

(12) 

V = K~112P/~ 112 (13) 

(P~)(q) = E ;~n(e~, ~)en(q) (14) 

e,(q) - [1/(2~r)v~21 exp(iq-n) (15) 

Let II/~llo = infp~B R(p) >/0 [by (Sb)] and II/~11| - supp~B/?(p) < m [by 
(8a)]. By (7) and (13), Vis a bounded operator on ~ ,  with 

llVll llgllo [sup (16) / 

It is also symmetric and positive, whence the spectrum of H is a subset of  
R +. From (8a) it follows that the spectrum ~r0 of Ho is absolutely continuous 
(see, e.g., ReL 5, p. 518, Example 19)5: 

= = ( 1 / M ) [ I i g l l o ,  llgll ] 

Throughout this section, we shall require the ]hnl.~z~ to satisfy the condition 

0 < An < ~ (t7) 

P is then a trace-class operator (see Refs. 5-7). 

Proposit ion 2.1. Under condition (17), 

= (18)  

and the part of ZH in the complement of Z~ro consists of  isolated eigenvalues 
with finite multiplicity. 

Proof. The trace-class operators form a two-sided ideal of  the algebra 
of  bounded operators on a Hilbert space (see, e.g., Ref. 6, p. 207). Hence V 
defined by (13) is also trace-class. It is also symmetric, whence (18) follows 
by a theorem of Kato (Ref. 5, Theorem 4.4, p. 540). The second part follows 
from the stability of the essential spectrum of a bounded symmetric operator 
by compact perturbations (Ref. 7, p. 362). �9 

Remark 2.1. Condition (17) includes the case of  a finite number of  
impurity atoms of  various species imbedded in a crystal containing in addition 

5 We denote by ~]~c the absolutely continuous part  of the spectrum ~a  of an  operator A 
on ,~. 
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an infinite number of atoms of the same species and mass M; results of the 
same type are given in Refs. 13 and 14. It is sufficient to take 

M.  = M Vn r A, A a finite subset of 7/v (19) 

In this case, V is degenerate, of rank not exceeding the number of points in 
A. The masses M,, of the impurity atoms are all smaller than M, and, depend- 
ing on how much smaller, one may have the situation described in Section 1, 
where the set of isolated eigenvalues is not empty: 

Proposit ion 2.2. Assume that 

I1~-1111 -= [1/(2~-)q fB dp/~-:t(p) < oo (20) 

Then there exists c~ < ] such that if 

M,  < aM for some n ~ 2v (21) 

the isolated point spectrum of H is not empty. 

Proof. Let q~, be defined by 

~.(p) ---- R-1/2(p)en(p) 

Then ~. E ~ and [[q~.]l 2 = [1/~-~]]z. By (11)-(13), 

( ,p . .  Hq,~ = = i / (Mol l~ ,~  =) = 1 / (M.IIR-~II1)  (22) 

We recall that (uRn ~o/M) is the upper bound of s176 and that by Proposition 
2.1 the part of the spectrum Zu in the complement of Z~o is an isolated point 
spectrum E s. Hence it follows from (22) that Zs is not empty if 

1/(m,,llk-~I]O > d/m) l i .g l l~ (23) 

Inequality (23) is equivalent to (21), with 

<~ = ~ / ( l lST -1 i i ~ l lST l l oo  ) 
We have 

1 = [1/(2~-)'q f~ dp/~-~(p)R(p) ~< IIST-'illllsTIt = (24) 

Equality in (24) is equivalent to 

[1/(2~-)'q f~ dp/~-'(p)[IIKl l  oo - ~ ( p ) ]  = o 

Since /~-~(p) >I 0 and /~ is bounded, this last condition can hold only if 
/~(p) = [[/~[[~ almost everywhere on B. This is excluded by the gradient 
condition in (8a). Hence ~ < 1. �9 
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Remark 2.2. As an example, take the case of nearest neighbor (nn) 
interactions, corresponding to the formal interaction Hamiltonian 

( . .  - . m ) 2  
nETZv 

m n z l o f  n 

This leads [by (3)] to 

/~(p) = J ( v -  ~=1 ~ cosp~), P-= (p~)~=l (25) 

Conditions (8) are clearly satisfied, but assumption (20) requires v I> 3. In 
particular, if v = 3, IIKII -- 6J, and 

II/~-1[I1 = 0.5054620197,/-1 

(this is the Watson integral(8~), whence 

c~ = 1/3.0327721182 ~ 1/3 (26) 

More generally, suppose that  v >/ 3 and 
N 

/~(q) = Jo + ~ Jz ~ cos(q.6~) (2V) 
l=l 6~ 

where, for each l >/ 1, fit runs over the set o f / t h  nearest neighbors of the 
origin, and conditions are imposed on the {Jz}z~0 in order to guarantee the 
validity of (8). Condit ion (20) is then, for v = 3, easily seen to be equivalent 
to the following constraint: 

0---~-~2 ] ,=  ~ = - J~ ~ (n,/) 2 :# 0, i = 1, 2, 3 (28) 
/ = 1  nil 

where ~,d  is a sum over the ith coordinates of the /th nearest neighbors. 
This assumption is equivalent to the existence of the continuum (elastic) 
limit where the frequencies co(p) ,,. Iol ~o ]PI- 

By methods of Ghirardi and Rimini (9~ (see also Ref. 10), one may prove 
the following bound on the number ArE of  eigenvalues of  H in the interval 
(E, oe), where E > II/~ll =/M: 

P r o p o s i t i o n  2.3.  

N~ < A(E) - ~ dp dp' IV(p, p')l=[E - g(p)/M]-~[E - g(p ' ) /M]  -1 (29) 
aB x B "  

where 

1 
V(p, p') --- ~ / ~ 1 / 2 ( p )  ~ ;~.{exp[i(p - p').n]}/~/2(p ') �9 (30) 

n e ~  v 

It is easy to prove that, if v = 1, 2, 

A(E) e, (ll/?ll=/M) > + ~ (31) 



On the Spectrum of the Dynamical Matrix 307 

while A(E) remains finite as E ~ (llRll~/m) if v = 3 for a large class of 
functions /~, which includes (25). This may be an indication that there 
might (for v = 1, 2) be accumulation of the eigenvalues at the boundary point 
E = I]~2II | We do not expect this to happen, however, if there is a finite 
number of impurity atoms: 

P ropos i t i on  2.4. Let (19) hold and N(A) be the number of points in 
A. If  N is the number of discrete eigenvalues of H, then 

N ~< N(A) (32) 

Proof. P is of finite rank N(A)(see Remark 2.1), and V is also of finite 

rank r such that (see, e.g., Ref. 5, p. 160) 

r ~< N(A) (33) 

Since V is a positive self-adjoint operator of rank r, there exists an ortho- 
normal system {~}~=1 such that 

V-- ~ m(q~, .)a#~, /~ > 0 
t = 1  

Let v~ (i >/ 1) be defined by 

vl = max (~, HO) 
II~ll = 1 

v~ = rain max (q~, H~),  i >f 2 

It follows that v~ /> v~+i and that 

= rain max ](~, H0~) 
~I . . . . .  T l  _ 1 @e(T1 . . . . .  ~ i  - i (  i , r i l l ]  = 1 L 

+ ~=,~/x~.(q)~, (I))12 ] 

~< max (as, Ho~) 

~< max ((I),Ho~)=Vo if ii> r +  1 (34) 
II~ll = 1 

On the other hand, it follows from the fact that V is positive that, for all 
i~>2,  

v~ /> min max (~, Ho~) (35) 
T i  . . . . .  ~ i  - i  @e(TI , . . . ,T (  - i  ) i  ,1]@[I = i 

By a version of Weyl's min-max principle (Proposition A. 1 of the appendix) 
applied to Ho, it follows that the right-hand side of (35) is independent of i 
and is the upper end of the essential spectrum of Ho, namely Vo. Hence from 
(35) we get 

v~ /> u0 for all i (36) 

From (34) and (36) it follows that v~ = v0 for all i >/ r + 1. Hence, by the 
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same Proposition A.1, vT+l is the upper end of the essential spectrum of H 
and there are at most r (discrete) eigenvalues of H. The final assertion follows 
from (33). [ ]  

R e m a r k  2.3. (1) A similar argument was used by Perez (1~) to prove 
that the number of two-magnon bound states in the Heisenberg ferromagnet 
in v dimensions is less than or equal to v. 

(2) The above proposition also provides a general variational principle 
which might be useful for the numerical calculation of the energies of all 
localized modes. 

(3) Result (32) is optimal because we expect the discrete eigenvalues of 
H to dissolve in the continuum where the mass ratios M~/M get sufficiently 
close to one. 

We finally consider the space-decay properties of the Un for the discrete 
spectrum, recalling transformation (9). Let /~ be given by (37) (with suitable 
{Jz}~=0;see Remark 2.2). 

P r o p o s i t i o n  2.5. Under the assumptions of Proposition 2.4, let V e 
satisfy the eigenvalue equation 

(Ho + PK)~I = E~7, E > (II~2[l ~/M) (37) 

and U. be related to ~ bu (5). Then 

(1 + [nl)k[u~[ < oo Vk ~ 7/+ (38) 
N~2~ v 

ProoL By (37) 

r/(p) = [ E -  K ( p ) / M ]  -~ 

x L dp' ( ~^ A~ exp[/(p - p')-n])/~(p')v(p' ) , p ~ B  (39) 

p ~ / ~ ( p )  given by (27) is a periodic function of each component p~ of p 
with period 2~r. From this, (39), and the fact that v ~ ~ ,  it follows that 
is infinitely differentiable, and any partial derivative ofv  is a periodic function 
of each component of its argument with period 2rr. Hence (38) follows by a 
standard result (e.g., Ref. 12, Theorem 513, p. 528). 6 [ ]  

3. R E M A R K S  ON THE CASE OF NONZERO 
C O N C E N T R A T I O N  A N D  C O M P A R I S O N  W I T H  
R A N D O M  H A R M O N I C  SYSTEMS 

Both condition (17) and the condition 

Z < cO hn 2 
nET/v 

6 The falloff may actually be proven to be exponential; see Ref. 15. 

(40) 
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(which implies that V is a Hilbert-Schmidt operator) can hold only if the 
number of impurity atoms of each species is finite--that is, in the limiting 
case of zero concentration of each species of impurity. If  condition (17) is 
relaxed, however, and only (40) is required, there no longer exists a general 
proof that E~ ~ = E~o: there exist Hilbert-Schmidt operators V such that 
H = H0 + V has a pure point spectrum (everywhere dense in Eno) (Theorem 
of Weyl-von Neumann; Ref. 5, p. 523). Mathematically, the whole problem 
consists in finding a proof of asymptotic completeness for a class of bounded 
but nonlocal potentials, and where the"  kinetic energy" is a function satisfying 
(8). On the other hand, it seems to us possible that Weyl-von Neumann 
phenomena occur for certain mass configurations, yielding a pure point 
spectrum for the dynamical matrix. We discuss below some reasons why (and 
conditions under which) this might be expected. 

In Ref. 3, Casher and Lebowitz considered the flux density J in the 
steady state in a harmonic crystal whose ends, separated by a distance L, 
were kept in contact with heat reservoirs at different temperatures. They 
proved that J does not tend to zero as L - +  ov (and therefore the thermal 
conductivity (3) is infinite) if the spectrum of the dynamical matrix contains an 
absolutely continuous part. For zero impurity concentration one expects 
infinite thermal conductivity just as for the perfect harmonic crystal. If  it is 
nonzero, however, one might expect that collisions between lattice waves and 
impurities would be sufficient in number to provide a finite thermal con- 
ductivity (and hence no ac spectrum) for certain distributions of impurities. 
This cannot be expected for a harmonic crystal with an arbitrary distribution 
of impurities (with nonzero concentration) because periodic configurations 
(corresponding to a unit cell containing two or more different atoms) give 
rise to infinite thermal conductivity and an ac spectrum. 

The latter difficulties do not occur for random harmonic chains (corre- 
sponding to the mass at each site being an independent random variable). 
For such systems it was proved in Ref. 3 that the spectrum of the dynamical 
matrix has, with probability one, no absolutely continuous part. It seems to 
us to be an interesting open problem to find precise conditions on the masses 
implying results of comparable generality for the nonrandom case, with 
nonzero concentration of each species of impurity. 

A P P E N D I X  

The following proposition is essentially Proposition II.32 of Ref. 10: 

Proposition A.1. Let H be a positive, bounded, self-adjoint operator 
on a Hilbert space J~, and {~}~= 1 (varying) orthonormal bases of ~ Let 

v~(H) ~ rain [ max (*, Hqb)] 
T 1 . . . . .  K ' n _  1 C E ( T  1 . . . . .  T n - 1 ) 1 , 1 ] ~ 1 1  = 1 
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Then,  either (a) v , (H)  is the nth eigenvalue for H, counting multiplicity (and 
counted f rom the greatest eigenvalue); or (b) us(H) is the upper end of  the 
essential spectrum, in which case v, = v,+~ . . . .  and there are at most  n - 1 
eigenvalues. [ ]  
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NOTE A D D E D  IN PROOF 

After the complet ion o f  this paper, we received van H e m m e n ' s  pre- 
print  (~5) where many  o f  our  results are generalized, in part icular  to include 
nonprimitive lattices. 

REFERENCES 

1. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in 
the Harmonic Approximation, in Solid State Physics, Suppl. 3 (Academic Press, 
New York, 1963). 

2. R. J. Elliott, Impurity and Anharmonic Effects in Lattice Dynamics, in Proc. Int, 
School Phys. E. Fermi, Course L V, S. Califano, ed. (Academic Press, New York, 
1975). 

3. A. Casher and J. L. Lebowitz, J. Math. Phys. 12:1701 (1971). 
4. J. L. Lebowitz, Nonequilibrium Statistical Mechanics, Cours de TroisiOme Cycle en 

Suisse Romande, Summer 1976, and references therein. 
5. T. Kato, Perturbation Theory for Linear Operators (Springer Verlag, Berlin, 1966). 
6. M. Reed and B. Simon, Methods o f  Modern Mathematical Physics, Vol. 1, Functional 

Analysis (Academic Press, New York, 1972). 
7. F. Riesz and B. Sz-Nagy, Lemons d'Analyse Fonetionnelle, 4th ed. (GauthierWillars, 

Paris, 1965). 
8. G. N. Watson, Quart. Y. Math. 10:266 (1939). 
9. G. C. Ghirardi and A. Rimini, J. Math. Phys. 6:40 (1965). 

10. B. Simon, Hamiltonians Defined as Quadratic Forms (Princeton Univ. Press, t971). 
11. J. F. Perez, Thesis, ETH Ztirich (1973), (unpublished). 
12. F. Tr6ves, Topological Vector Spaces, Distributions and Kernels (Academic Press, 

New York, 1967). 
13. A. O'Connor and J. L. Lebowitz, d, Math. Phys. 15:692 (1974). 
14. O. E. Lanford and J. L. Lebowitz, in Dynamical Systems, J. Moser, ed. (Lecture 

Notes in Physics, Vol. 38, Springer Verlag, 1976). 
15. L. van Hemmen, A Generalization of Rayleigh's Theorem to the Infinite Harmonic 

Crystal, Preprint I.H.E.S. (t977). 


